In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.

نویسندگان

  • D D Chan
  • C P Neu
  • M L Hull
چکیده

OBJECTIVES Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-dependency of these measures across specimens. DESIGN Juvenile porcine tibiofemoral joints were cyclically compressed at one and two times body weight at 0.1 Hz to achieve a quasi-steady state load-displacement response. A 7.0 T MRI scanner was used for displacement-encoded imaging with stimulated echoes and a fast spin echo acquisition (DENSE-FSE) in eight intact joints. Two-dimensional displacements and strains were determined throughout the thickness of the tibial and femoral cartilage and then normalized over the tissue thickness. RESULTS Two-dimensional displacements and strains were heterogeneous through the depth of femoral and tibial cartilage under cyclic compression. Strains in the loading direction were compressive and were maximal in the middle zone of femoral and tibial cartilage, and tensile strains were observed in the direction transverse to loading. CONCLUSIONS This study determined the depth-dependent displacements and strains in intact juvenile porcine tibiofemoral joints using displacement-encoded imaging. Displacement and strain distributions reflect the heterogeneous biochemistry of cartilage and the biomechanical response of the tissue to compression in the loading environment of an intact joint. This unique information about the biomechanics of cartilage has potential for comparisons of healthy and degenerated tissue and in the design of engineered replacement tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-steady-state displacement response of whole human cadaveric knees in a MRI scanner.

It is important to determine the three-dimensional nonuniform deformation of articular cartilage in its native environment. A new magnetic resonance imaging (MRI)-based technique (cartilage deformation by tag registration (CDTR)) has been developed, which can determine such deformations provided that the compressive load-displacement response of the knee reaches a quasi-steady state during cycl...

متن کامل

Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging.

This study demonstrates the in vitro displacement and strain of articular cartilage in a cyclically-compressed and intact joint using displacement-encoded imaging with stimulated echoes (DENSE) and fast spin echo (FSE). Deformation and strain fields exhibited complex and heterogeneous patterns. The displacements in the loading direction ranged from -1688 to -1481 microm in the tibial cartilage ...

متن کامل

Tibiofemoral Cartilage Deformation Determined in Cyclic Compression by Displacement-Encoded MRI

Introduction: Measurement of articular cartilage deformation is important to characterize the differences between healthy and pathological tissue and to compare native tissue with engineered constructs. Among these differences is the nonuniform distribution of extracellular matrix proteins through the tissue depth, which in turn gives rise to heterogeneous strains and anisotropic mechanical pro...

متن کامل

In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we ...

متن کامل

Transient and Microscale Deformations and Strains Measured under Exogenous Loading by Noninvasive Magnetic Resonance

Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Osteoarthritis and cartilage

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2009